Jour. Ind. Soc. Ag. Statistics Vol. XXXVIII, No. 2 (1986), pp. 187-192

SOME IMPROVED BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

SANPEI KAGEYAMA*

Hiroshima University, Hiroshima 734, Japan

and

S. M. SHAH and C. C. GUJARATHI Sardar Patel University, Vallabh Vidyanagar, Gujarat, India (Received : March, 1984)

SUMMARY

In a balanced incomplete block (BIB) design with parameters v, b, r, k and λ , Shah [6] obtained an upper bound $b \leq (r^2 - 1)/\lambda$ on b. The main purpose of this paper is to improve this inequality and to obtain some upper bounds on the number of blocks in a BIB design under reasonable parametric restrictions.

Introduction

For the number of blocks of a BIB design with parameters v, b, r, kand λ , it is well known that the Fisher inequality $b \ge v$ holds. On the other hand, Shah [6] gave an upper bound $b \le (r^2 - 1)/\lambda$, and it is known that this bound is attained when $r = k = \lambda + 1$. Since the design becomes a trivial design when $r = \lambda + 1$, by relaxing this attaining condition, in this paper the Shah bound is improved in some directions under certain reasonable parametric restrictions. Finally, the Kageyama bound [2] $b \ge (m^2\lambda + m)/\mu^2$ for a BIB design with parameters v, b = mt, $r = \mu t$, k and λ is derived without an assumption of b = mt.

Discussions and Results

It is known that the Shah inequality $b \leq (r^2 - 1)/\lambda$ is attained when $d \geq d \leq 1/\lambda$

*Prepared while visiting the Department of Statistics, Sardar Patel University.

JGURNAL OF THE INDIAN SOCIETY OF AGRICULTURAL STATISTICS

r = k and $r = \lambda + 1$. In order to improve this inequality, we consider its attaining condition. In this case, the following characterization is given.

LEMMA. A BIB design with parameters v, b, r, k and λ satisfying $r = \lambda + 1$ is a symmetrical BIB design with parameters $v = b = \lambda + 2$, $r = k = \lambda + 1$ and λ .

Proof. From a basic relation $\lambda(\nu - 1) = r(k - 1)$ and the assumption $r = \lambda + 1$, we get $\nu = (\lambda + 1) (k - 1)/\lambda + 1$, which, from $(\lambda, \lambda + 1) = 1$, implies that there exists a positive integer l such that $k - 1 = l\lambda$. Since $r \ge k$, we get l = 1, i.e., $r = k = \lambda + 1$. Then $\nu = \lambda + 2$. Thus, we have the required result.

Under the observation in the lemma, we shall give below some theorems on upper bounds for the number of blocks in a BIB design. In what follows, a symbol [x] means the largest integer $\langle x, where x$ is not an integer.

THEOREM 2.1. In a BIB design with parameters v, b, r, k and λ , if $r \neq \lambda + 1$, then $b \leq (r^2 - 2)/\lambda$, with the equality holding when $r = k = \lambda + 2$.

Proof From a basic relation $\lambda(v - 1) = r(k - 1)$ of a BIB design, we get

$$rk - \lambda v = r - \lambda. \tag{2.1}$$

Since $r - \lambda \ge 1$ in general and $r \ne \lambda + 1$, we get $r - \lambda \ge 2$, which, from (2.1), yields $rk - \lambda v \ge 2$. This, after multiplying by r and simplifying, yields

$$b \leq r^2 / \lambda - 2r / (\lambda k). \tag{2.2}$$

Since $r \ge k$ in general, $b \le (r^2 - 2)/\lambda$. It is obvious that $b = (r^2 - 2)/\lambda$ is attained when $r = k = \lambda + 2$.

As a refinement of Theorem 2.1, we get the following.

PROPOSITION 2.2. In a non-symmetrical BIB design with parameters v, b, r, k and λ ,

(i) $b \leq (r^2 - 2)/\lambda - 1$ if $(r^2 - 2)/\lambda =$ an integer; (ii) $b \leq [(r^2 - 2)/\lambda]$ if $(r^2 - 2)/\lambda \neq$ an integer.

Proof. Since r > k, the lemma and (2.2) yield $b < (r^2 - 2)/\lambda$, which shows the required result.

188

SOME IMPROVED BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS 189

THEOREM 2.3. In a BIB design with parameters v, b, r, k and λ , if $k \leq v/n$ for an integer $n \geq 2$, then $b \leq (r^2 - 1)/\lambda - (n - 1)$, with the equality holding when $r = k = n\lambda + 1$.

Proof. It follows that for $n \ge 2$,

$$c \leq v/n \Leftrightarrow nk - 1 \leq v - 1$$

$$\Leftrightarrow (n - 1) rk + r(k - 1) \leq r(v - 1)$$

$$\Leftrightarrow r \geq \{\lambda(v - 1) + rk(n - 1)\}/(v - 1)$$

$$\Leftrightarrow r - n\lambda \geq r(n - 1)/(v - 1) > 0$$

$$\Leftrightarrow r - n\lambda \geq 1.$$
(2.3)

From (2.1) and (2.3), we get $rk - \lambda v \ge (n - 1) \lambda + 1$, which, upon multiplying by r and simplifying, yields $b \le r^2/\lambda - (n - 1) r/k - r/(k\lambda)$. Since $r \ge k$ in general,

$$b \leq (r^2 - 1)/\lambda - (n - 1).$$

It is clear that this bound is attained when $r = k = n\lambda + 1$.

The following is the refinement of Theorem 2.3.

PROPOSITION 2.4. In a non-symmetrical BIB design with parameters v, b, r, k and λ , if $k \leq v/n$ for $n \geq 2$, then

(i) $b \leq (r^2 - 1)/\lambda - n$ when $(r^2 - 1)/\lambda = an$ integer; (ii) $b \leq [(r^2 - 1)/\lambda] - (n - 1)$ when $(r^2 - 1)/\lambda \neq an$ integer.

Proof. Since r > k, from (2.4) we get $b < (r^2 - 1)/\lambda - (n - 1)$ which yields the required result.

For a BIB design or its complementary design, one can always find that $k \leq v/2$. Hence, without loss of generality, consider a BIB design satisfying $k \leq v/2$. In this case, Theorem 2.3 and Proposition 2.4 yield the following when n = 2.

COROLLARY 2.4.1. In a BIB design with parameters v, b, r, k and λ , if $k \leq v/2$, then $b \leq (r^2 - 1)/\lambda - 1$. Furthermore, for a non-symmetrical BIB design, $b \leq (r^2 - 1)/\lambda - 2$ if $(r^2 - 1)/\lambda = an$ integer: and $b \leq [(r^2 - 1)/\lambda] - 1$ if $(r^2 - 1)/\lambda \neq an$ integer.

Remark 2.1. Theorems 2.1 and 2.3, and Propositions 2.2 and 2.4 give improvements for the Shah inequality $b \leq (r^2 - 1)/\lambda$ under some parametric restrictions which are reasonable.

Kageyama [1] has shown that in a BIB design with parameters v = nk, b, r, k and λ ,

$$b > v + r - 2 \Leftrightarrow r \geq \lambda + 2k$$
.

This gives us the following.

(2.5)

(2.4)

THEOREM 2.5. In a BIB design with parameters v = nk, b, r, k and λ , if b > v + r - 1, then $b \leq r(r-2)/\lambda$ and vice versa. The inequality is attained if and only if $r = \lambda + 2k$.

Proof. From (2.1) and (2.5), we get $(r - n\lambda) k \ge 2k \Leftrightarrow r - 2 \ge n\lambda$ $\Leftrightarrow r (r - 2) \ge nr\lambda$ $\Leftrightarrow b \le r(r - 2)/\lambda.$

The converse is obvious. An attaining case of this inequality follows from (2.5).

Remark 2.2. Theorem 2.5 gives an improvement of an inequality $b \leq r(r-1)/\lambda$ due to Shah [6] under an assumption.

Theorem 2.5 yields immediately the following in terms of practical concepts.

COROLLARY 2.5.1. In a resolvable BIB design which is not affine resolvuble, $b \leq r(r-2)|\lambda$, the equality holding if and only if $r - \lambda = 2k$.

COROLLARY 2.5.2. In a resolvable BIB design which is not affine resolvable, if $r = \lambda + 2k$, then $v = (r - 2)(r - \lambda)/(2\lambda)$, $b = r(r - 2)/\lambda$, $k = (r - \lambda)/2$.

COROLLARY 2.5.3. In a BIB design with parameters v = nk, b, r, k, λ satisfying b > v + r - I and $r - \lambda \neq 2k$, we have $b \leq r(r - 3)/\lambda$, with the equality holding if and only if $r - n\lambda = 3$ ($\Leftrightarrow r - \lambda = 3k$).

Example 2.2. Consider a resolvable (unreduced) BIB design with parameters v = 8, b = 28, r = 7, k = 2 and $\lambda = 1$ (cf. Raghavarao [5]). The bound $b \leq r(r-3)/\lambda$ is attained for this BIB design.

Ramark 2.3. Under the same situation as in Corollary 2.4.1, Kageyama [3] gave some improved lower bounds on the number of blocks in a BIB design.

Shah [7] has shown that for a BIB design with parameters v, b = mt, $r = \mu t$, k and λ ,

 $b \stackrel{\geq}{\equiv} v + r - 1 \Leftrightarrow \mu r - m\lambda \stackrel{\geq}{\equiv} \mu, \qquad (2.6)$

respectively. This gives the following.

THEOREM 2.6. In a BIB design with parameters v, b = mt, $r = \mu t$, k and λ ,

 $b \stackrel{\geq}{\equiv} v + r - 1 \Leftrightarrow b \stackrel{\geq}{\equiv} (m^2 \lambda + m \mu) / \mu^2$, respectively.

190

SOME IMPROVED BOUNDS OF THE NUMBER OF BLOCKS IN BIB DESIGNS 191

Proof. From (2.6), we have

$$b \stackrel{\geq}{=} v + r - 1 \Leftrightarrow \mu rm \stackrel{\geq}{=} m^2 \lambda + m\mu$$
$$\Leftrightarrow mt \stackrel{\geq}{=} (m^2 \lambda + m\mu)/\mu^2$$
$$\Leftrightarrow b \stackrel{\geq}{=} (m^2 \lambda + m\mu)/\mu^3.$$

Remark 2.4. The inequalities in Theorem 2.6 are attained at the same time. When $\mu = 1$, a case $b \ge v + r - 1$ only has a meaning.

Two expressions in Theorem 2.6 have some meaning, as the following examples show.

Example 2.2. Consider a BIB design with parameters v = 6, b = 20, r = 10, k = 3 and $\lambda = 4$ (cf. Takeuchi [8]), having $\mu = 2$, m = 4 and t = 5. In this case, v + r - 1 = 15, $(m^2\lambda + m\mu)/\mu^2 = 18$ and b = 20.

Example 2.3. Consider a BIB design with parameters v = 49, b = 56, r = 24, k = 21 and $\lambda = 10$ (cf. Kageyama and Mohan [4]), having $\mu = 3$, m = 7 and t = 8. In this case, v + r - 1 = 72, $(m^2\lambda + m\mu)/\mu^2 = 56.28$ and b = 56. The second bound is actually attained, since the number of blocks is an integer.

As a result of these observations, we have

COROLLARY 2.6.1. In a BIB design with parameters v, b = mt, $r = \mu t$, k and λ ,

$$b \stackrel{\geq}{\equiv} v + r - 1 \Leftrightarrow b \stackrel{\geq}{\equiv} \frac{m^2 \lambda + m \mu}{\mu^2} \Leftrightarrow \mu r - m \lambda \stackrel{\geq}{\equiv} \mu \Leftrightarrow r \stackrel{\geq}{\equiv} k + \lambda,$$

respectively.

Kageyama [2] derived a bound $b \ge (m^2\lambda + m)/\mu^2$ for a BIB design with parameters $v, b = mt, r = \mu t, k$ and λ . This bound can also be given by relaxing a condition b = mt as follows.

THEOREM 2.7. In a BIB design with parameters v, b, $r = \mu t$, k and λ , $b \ge (\lambda m^2 + m)/\mu^2$, where m is the largest integer $\le b/t$.

Proof. From (2.1) and the basic relation bk = vr, we get $(r^2 - \lambda b)$ $k = r(r - \lambda) > 0$, which yields

 $r^2 - \lambda b \ge 1. \tag{2.7}$

Let b = mt + i, $0 \le i \le t - 1$. Substituting this in (2.7) we get

$$(\mu r - \lambda m) t \ge 1 + \lambda i \ge 1 \Rightarrow \mu r - \lambda m \ge 1 \Rightarrow (\mu r - \lambda m) m \ge m$$

 $\Rightarrow \mu rm \ge \lambda m^{2} + m$ $\Rightarrow \mu rm/\mu^{2} \ge (\lambda m^{2} + m)/\mu^{2}$ $\Rightarrow mt \ge (\lambda m^{2} + m)/\mu^{2} \quad \text{since } r =$ $\Rightarrow b \ge (\lambda m^{3} + m)/\mu^{2} \quad \text{since } m$

since $r = \mu t$ since $m \leq b/t$.

Remark 2.5. Taking i = 0 in b = mt + i, we get the result of Kageyama [2].

3. Concluding Remark

This type of improvements for known inequalities can always be given if one puts additional parametric restrictions on a BIB design. Artificial restrictions are infinite in number so is the number of new bounds. However, the conditions of non-symmetry $(b \neq v)$, $k \leq v/2$, or $r \neq +1$ on the designs discussed here are very simple and reasonable restrictions. It appears that almost all of BIB designs satisfy the above restrictions. That is why we choose these restrictions as a motivation of this paper, from a point of view of an improvement of an inequality.

ACKNOWLEDGEMENT

The authors are thankful to a referee for his instructive comments.

REFERENCES

- Kageyama, S. (1971) : An improved inequality for balanced incomplete block designs. Ann, Math. Statist., 42 : 1448-1449.
- [2] Kageyama, S. (1973) : On the inequality for BIBDs with special parameters, Ann. Statist., 1; 204-207.
- [3] Kageyama, S. (1981): Bounds on the number of blocks in BIB designs, Bull. Fac. Educ., Hiroshima Univ., 4 (2): 71-74.
- [4] Kageyama, S. and Mohan, R. N. (1983): On μ-resolvable BIB designs, Discrete Math., 45: 113-122.
- [5] Raghavarao, D. (1971): Construction and Combinatorial Problems in Design of Experiments, John Wiley & Sons, Inc., New York.
- [6] Shah, S. M. (1963) : An upper bound for the number of blocks in balanced incomplete block designs, J. Indian Statist. Assoc., 1: 91-92.
- [7] Shah, S. M. (1975): On the existence of affine μ-resolvable BIBDs. In R. P. Gupta (ed.), Applied Statistics, pp. 289-293, North Holland Publishing Company.
- [8] Takeuchi, K. (1972): A table of difference sets generating balanced incomplete block designs, Rev. Int. Stat. Inst., 30 (3): 361-366.