SOME IMPROVED BOUNDS ON THE NUMBER OF BLOCKS IN BIB DESIGNS

SANPEI KAGEYAMA*
Hiroshima University, Hiroshima 734, Japan
and
S. M. SHAH and C. C. GUJARATHI
Sardar Patel University, Vallabh Vidyanagar, Gujarat, India
(Received : March; 1984)

Summary

In a balanced incomplete block (BIB) design with parameters v, b, r, k and λ, Shah [6] obtained an upper bound $b \leqslant\left(r^{2}-1\right) / \lambda$ on b. The main purpose of this paper is to improve this inequality and to obtain some upper bounds on the number of blocks in a BIB design under reasonable parametric restrictions.

Introduction

For the number of blocks of a BIB design with parameters v, b, r, k and λ, it is well known that the Fisher inequality $b \geqq v$ holds. On the other hand, Shah [6] gave an upper bound $b \leqq\left(r^{2}-1\right) / \lambda$, and it is known that this bound is attained when $r=k=\lambda+1$. Since the design becomes a trivial design when $r=\lambda+1$, by relaxing this attaining condition, in this paper the Shah bound is improved in some directions under certain reasonable parametric restrictions. Finally, the Kageyama bound $[2]\left[b\left(m^{2} \lambda+m\right) / \mu^{2}\right.$ for a BIB design with parameters $v, b=m t, r=\mu t$, k and λ is derived without an assumption of $b=m t$.

Discussions and Results

It is known that the Shah inequality $b \leqq\left(r^{2}-1\right) / \lambda$ is attained when

[^0]$r=k$ and $r=\lambda+1$. In order to improve this inequality, we consider its attaining condition. In this case, the following characterization is given.

Lemma. A BIB design with parameters i, b, r, k and λ satisfying $r=$ $\lambda+1$ is a symmetrical BIB design with parameters $v=b=\lambda+2, r=$ $k=\lambda+1$ and λ.

Proof. From a basic relation $\lambda(\nu-1)=r(k-1)$ and the assumption $r=\lambda+1$, we get $v=(\lambda+1)(k-1) / \lambda+1$, which, from $(\lambda, \lambda+1)$ $=1$, implies that there exists a positive integer l such that $k-1=\dot{\lambda}$. Since $r \geqq k$, we get $l=1$, i.e., $r=k=\lambda+1$. Then $v=\lambda+2$. Thus, we have the required result.

Under the observation in the lemma, we shall give below some theorems on upper bounds for the number of blocks in a BIB design. In what follows, a symbol $[x]$ means the largest integer $<x$, where x is not an integer.

Theorem 2.1. In a BIB design with parameters v, b, r, k and λ, if $r \neq$ $\lambda+1$, then $b \leqq\left(r^{2}-2\right) / \lambda$, with the equality holding when $r=k=\lambda+2$.

Proof. From a bàsic relation $\lambda(v-1)=r(k-1)$ of a BIB design, we get

$$
\begin{equation*}
r k-\lambda \nu=r-\lambda \tag{2.1}
\end{equation*}
$$

Since $r-\lambda \geqq 1$ in general and $r \neq \lambda+1$, we get $r-\lambda \geqq 2$, which, from (2.1), yields $r k-\lambda \nu \geqq 2$. This, after multiplying by r and simplifying, yields

$$
\begin{equation*}
\dot{b} \leq r^{2} / \lambda-2 r /(\lambda k) \tag{2.2}
\end{equation*}
$$

Since $r \geqq k$ in general, $b \leqq\left(r^{2}-2\right) / \lambda$. It is obvious that $b=\left(r^{2}-2\right) / \lambda$ is attained when $r=k=\lambda+2$.

As a refinement of Theorem 2.1, we get the following.

Proposition 2.2. In a non-symmetrical BIB design with parameters v, b, r, k and λ,
(i) $b \leqq\left(r^{2}-2\right) / \lambda-1 \quad$ if $\left(r^{2}-2\right) / \lambda=$ an integer;
(ii) $b \leqq\left[\left(r^{2}-2\right) / \lambda\right]$
if $\left(r^{2}-2\right) / \lambda \neq$ an integer.
Proof. Since $r>k$, the lemma and (2.2) yield $b<\left(r^{2}-2\right) / \lambda$, which shows the required result.

Theorem 2.3. In a BIB dcsign' with parameters v, b, r, k and λ, if $k \leqq$ v / n for an integer $n \geqq 2$, then $b \leqq\left(r^{2}-1\right) / \lambda-(n-1)$, with the equality holding when $r=k=n \lambda+I$.

Proof. It follows that for $n \geqq 2$,

$$
\begin{align*}
k \leqq v / n & \Leftrightarrow n k-1 \leqq v-1 \\
& \Leftrightarrow(n-1) r k+r(k-1) \leqq r(v-1) \\
& \Leftrightarrow r \geqq\{\lambda(v-1)+r k(n-1)\} /(v-1) \\
& \Leftrightarrow r-n \lambda \geqq r(n-1) /(v-1)>0 \\
& \Leftrightarrow r-n \lambda \geqq 1 . \tag{2.3}
\end{align*}
$$

From (2.1) and (2.3), we get $r k-\lambda \nu \geqq(n-1) \lambda+1$, which, upon multiplying by r and simplifying, yields $b \leqq r^{2} / \lambda-(n-1) r / k-r /(k \lambda)$. Since $r \geqq k$ in general,

$$
\begin{equation*}
b \leqq\left(r^{2}-1\right) / \lambda-(n-1) \tag{2.4}
\end{equation*}
$$

It is clear that this bound is attained when $r=k=n \lambda+1$.
The following is the refinement of Theorem 2.3.
Proposition 2.4. In a non- symmetrical BIB design with parameters v, b, r, k and λ, if $k \leqq v / n$ for $n \geqslant 2$, then

$$
\begin{array}{ll}
\text { (i) } b \leqq\left(r^{2}-1\right) / \lambda-n & \text { when }\left(r^{2}-1\right) / \lambda=\text { an integer; } \\
\text { (ii) } b \leqq\left[\left(r^{2}-1\right) / \lambda\right]-(n-1) & \text { when }\left(r^{2}-1\right) / \lambda \neq \text { an integer. }
\end{array}
$$

Proof. Since $r>k$, from (2.4) we get $b<\left(r^{2}-1\right) / \lambda-(n-1)$ which yields the require d result.

For a BIB design or its complementary design, one can always find that $k \leqq v / 2$. Hence, without loss of generality, consider a BIB design satisfying $k \leq v / 2$. In this case, Theorem 2.3 and Proposition 2.4 yield the following when $n=2$.

Corollary 2.4.1. In a BIB design with parameters v, b, r, k and λ, if $k \leqq \nu / 2$, then $b \leqq\left(r^{2}-1\right) / \lambda-1$. Furthermore, for a non-symmetrical $B I B$ design, $b \leqq\left(r^{2}-I\right) / \lambda-2$ if $\left(r^{2}-1\right) / \lambda=$ an integer: and $b \leqq$ $\left[\left(r^{2}-1\right) / \lambda\right]-1$ if $\left(r^{2}-1\right) / \lambda \neq$ an integer.

Remark 2.1. Theorems 2.1 and 2.3, and Propositions 2.2 and 2.4 give improvements for the Shah inequality $b \leqq\left(r^{2}-1\right) / \lambda$ under some parametric restrictions which are reasonable.

Kageyama [1] has shown that in a BIB design with parameters $v=n k$, b, r, k and λ,

$$
\begin{equation*}
b>v+r-2 \Leftrightarrow r \geqq \lambda+2 k . \tag{2.5}
\end{equation*}
$$

This gives us the following.

Thborem 2.5. In a BIB design with parameters $v=n k, b, r, k$ and λ, if $b>v+r .-I$, then $b \leqq r(r-2) / \lambda$ and vice versa. The inequality is attained if and only if $r=\lambda+2 k$.

Proof. From (2.1) and (2.5), we get

$$
\begin{aligned}
(r-n \lambda) k \geqq 2 k & \Leftrightarrow r-2 \geqslant n \lambda \\
& \Leftrightarrow r(r-2) \geqslant n r \lambda \\
& \Leftrightarrow b \leqq r(r-2) / \lambda
\end{aligned}
$$

The converse is obvious. An attaining case of this inequality follows from (2.5).

Remark 2.2. Theorem 2.5 gives an improvement of an inequality $b \leqq$ $r(r-1) / \lambda$ due to Shah [6] under an assumption.

Theorem 2.5 yields immediately the following in terms of practical concepts.

Corollary 2.5.1. In a resolvable BIB design which is not affine resolvuble, $b \leqq r(r-2) / \lambda$, the equality holding if and only if $r-\lambda=2 k$.

Corollary 2.5.2. In a resolvable BIB design which is not affine resolvable, if $r=\lambda+2 k$, then $v=(r-2)(r-\lambda) /(2 \lambda), b=r(r-2) / \lambda$, $k=(r-\lambda) / 2$.

Corollaty 2.5.3. In a BIB design with parameters $v=n k, b, r, k, \lambda$ satisfying $b>v+r-I$ and $r-\lambda \neq 2 k$, we have $b \leqq r(r-3) / \lambda$, with the equality holding if and only if $r-n \lambda=3(\Leftrightarrow r-\lambda=3 k)$.

Example 2.2. Consider a resolvable (unreduced) BIB design with parameters $v=8, b=28, r=7, k=2$ and $\lambda=1$ (cf. Raghavarao [5]). The bound $b \leqq r(r-3) / \lambda$ is attained for this BLB design.

Ramark 2.3. Under the same situation as in Corollary 2.4.1, Kageyama [3] gave some improved lower bounds on the number of blocks in a BIB design.

Shah [7] has shown that for a BIB design with parameters $v, b=m t$, $r=\mu t, k$ and λ,

$$
\begin{equation*}
b \gtreqless v+r-1 \Leftrightarrow \mu r-m \lambda \gtreqless \mu, \tag{2.6}
\end{equation*}
$$

respectively. This gives the following.
Theorem 2.6. In a BIB design with parameters $v, b=m t, r=\mu t$, k and λ,

$$
b \gtreqless v+r-1 \Leftrightarrow b \gtreqless\left(m^{2} \lambda+m \mu\right) / \mu^{2}
$$

respectively.

Proof. From (2.6), we have

$$
\begin{aligned}
& b \gtreqless \nu+r-1 \Leftrightarrow \mu r m \\
& \gtreqless m^{2} \lambda+m \mu \\
& \Leftrightarrow m t \geqslant\left(m^{2} \lambda+m \mu\right) / \mu^{2} \\
& \Leftrightarrow b \geqslant \\
& \gtreqless\left(m^{2} \lambda+m \mu\right) / \mu^{2} .
\end{aligned}
$$

Remark 2.4. The inequalities in Theorem 2.6 are attained at the same time. When $\mu=1$, a case $b \geqq v+r-1$ only bas a meaning.
Two expressions in Theorem 2.6 have some meaning, as the following examples show.

Example 2.2. Consider a BIB design with parameters $v=6, b \doteq 20$, $r=10, k=3$ and $\lambda=4$ (cf. Takeuchi [8]), having $\mu=2, m=4$ and . $t=5$. In this case, $v+r-1=15,\left(m^{2} \lambda+m \mu\right) / \mu^{2}=18$ and $b=20$.

Example 2.3. Consider:a BIB design with parameters $v=49, b=56$, $r=24, k=21$ and $\lambda=10$ (cf. Kageyama and Mohan [4]), having $\mu=3, m \doteq 7$ and $t=8$. In this case, $v+r-1=72,\left(m^{2} \lambda+m \mu\right) / \mu^{2}$ $=56.28$ and $b=56$. The second bound is actually attained, since the number of blocks is an integer.

As a result of these observations, we have
Corollary 2.6.1. In a BIB design with parameters $v, b=m t, r=\mu t$, k and λ,
respectively.
Kageyama [2] derived a bound $b \geqslant\left(m^{2} \lambda+m\right) / \mu^{2}$ for a BIB design with parameters $v, b=m t, r=\mu t, k$ and λ. This bound can also be given by relaxing a condition $b=m t$ as follows.

Theorem 2.7. In a BIB design with parameters $v, b, r=\mu t, k$ and λ, $b \geqq\left(\lambda m^{2}+m\right) / \mu^{2}$, where m is the largest integer $\leqq b / t$.

Proof. From (2.1) and the basic relation $b k=v r$, we get $\left(r^{2}-\lambda b\right)$ $k=r(r-\lambda)>0$, which yields

$$
\begin{equation*}
r^{2}-\lambda b \geqq 1 \tag{2.7}
\end{equation*}
$$

Let $b=m t+\mathrm{i}, 0 \leqq i \leqq t-1$. Substituting this in (2.7) we get

$$
\begin{gathered}
(\mu r-\lambda m) t \geqq 1+\lambda i \geqslant 1 \\
\Rightarrow \mu r \cdot \lambda m \geqslant 1 \\
\quad \Leftrightarrow(\mu r-\lambda m) m \geqslant m
\end{gathered}
$$

```
\(\Leftrightarrow \mu r m \geqq \lambda m^{2}+m\)
\(\Leftrightarrow \mu r m / \mu^{2} \geqq\left(\lambda m^{2}+m\right) / \mu^{2}\)
\(\Leftrightarrow m t \geqq\left(\lambda m^{2}+m\right) / \mu^{2}\). since \(r=\mu t\)
\(\Rightarrow b \geqq\left(\lambda m^{2}+m\right) / \mu^{2} \quad\) since \(m \leqq b / t\).
```

Remark 2.5. Taking $i=0$ in $b=m t+i$, we get the result of Kageyama [2].

3. Concluding Remark

This type of improvements for known inequalities can always be given if one puts additional parametric restrictions on a BIB design. Artificial restrictions are infinite in number so is the number of new bounds. However, the conditions of non-symmetry $(b \neq v), k \leqq v / 2$, or $r \neq+1$ on the designs discussed here are very simple and reasonable restrictions. It appears that almost all of BIB designs satisfy the above restrictions. That is why we choose these restrictions as a motivation of this paper, from a point of view of an improvement of an inequality.

ACKNOWLEDGEMENT

The authors are thankful to a referee for his instructive comments.

REFERENCES

[I] Kageyama, S. (1971) : An improved inequality for balanced incompletc block designs. Ann, Math. Statist., 42 : 1448-1 449.
[2] Kageyama, S. (1973) : On the inequality for BIBDs with special parameters, Ann. Statist., 1 ; 204-207.
[3] Kageyama, S. (1981) : Bounds on the number of blocks in BIB designs, Bull. Fac. Educ., Hiroshima Univ., 4 (2) : 71-74.
[4] Kageyama, S. and Mohan, R. N. (1983) : On μ-resolvable BİB designs, Discrete Math., 45 : 113-1 22.
[5] Raghavarao, D. (1971) : Construction and Combinatorial Problems in Design of Experiments, John Wiley \& Sons, Inc., New York.
[6] Shah, S. M. (1963) : An upper bound for the number of blocks in balanced incomplete block designs, J. Indian Statist. Assoc., 1 : 91-92.
[7] Shah, S. M. (1975) : On the existence of affine μ-resolvable BIBDs. In R. P. Gupta (ed.), Applied Statistics, pp. 289-293, North Holland Publishing Company.
[8] Takeuchi, K. (1972): A table of difference sets generating balanced incomplete block designs, Rev. Int. Stat. Inst., 30 (3) : 361-366.

[^0]: *Prepared while visiting the Department of Statistics, Sardar Patel University.

